

Diabetes Alliance Integration Program Diabetes Master class Micro and Macrovascular complications Diabetes and Pregnancy

Dr Judy Luu Senior Staff Specialist Endocrinologist HNE Health

An Australian Government Initiative

Learning Objectives

- Micro and Macrovascular complications and implications for newer agents
- Diabetes and foot disease
- Diabetes and Pregnancy

Diabetes complications

• Acute

- > Diabetic Ketoacidosis (DKA) [beware euDKA with SGLT2i]
- Hyperosmolar hyperglycaemia state (HHS)
- Hypoglycaemia from treatment
- Immune paresis
- Chronic
- Microvascular: nephropathy, neuropathy, retinopathy
- Macrovascular: IHD, PVD and CVD
- Neuropathy: peripheral, autonomic

Mechanism of development of chronic complications

- glycosylation of proteins
 - Transient
 - Permanent
 - Protein dysfunction
- Inflammatory activation
- Tissue hypoxia
- Excess energy storage (hyperinsulinemia)

Causality and directionality of relationships are not firmly established for all pathways and intermediate mechanisms shown. AGE, advanced glycation end-products; BNP, B-type natriuretic peptide; CAD, coronary artery disease; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; IL-1 β , interleukin-1 β ; IL-6, interleukin-6; LDL-C, low-density lipoprotein cholesterol; NF-B, nuclear factor- κ B; PAD, peripheral artery disease; ROS, reactive oxygen species.

Our Alliance

S Vella and R Petrie (2014). Medicine 43:1

Pre-existing Diabetes and Pregnancy

gestation	Week 1	Week 2	Week 3	Week 4	Week 5	week 6
	Zygote spends 3 days in fallopian tube another 3 days in	Implantation in the uterus and establishment of contact	Neural tube formation and closure	Single chamber heart	Cardiac septation	Great vessels Primordial kidney

By the time woman comes with positive pregnancy test – it is too late to avoid major malformation

Sestation	WEEK I	WCCN Z	WCCR J	WCCN 4	WEER J	WEER U
			Caudal regression	Anencephaly myelocele	hydrocephalus	Spina bifida
				dextrocardia	Conus arteriosus defects	VSD Renal agenesis hypoplasia

OVER SUPPLY OF GLUCOSE AND ABNORMAL METABOLISM

hyperglycaemia

BEFORE BIRTH: High glucose is teratogenic

Diabetic embryopathy (before 7/40)

Vertebral anomalies Anorectal malformation Cardiovascular anomalies Tracheo-oesophageal fistula Esophageal atresia Renal anomalies Limb defects

Risk of Birth Defects

Birth defect Relative frequency Nonblastogenic malformations undetermined^a Bifid tongue 2.92^b Cleft lip \pm cleft palate Facial dysmorphism undetermined^c Hydrocephaly 8.80^b Hypertrophic cardiomyopathy (congenital) 15.10-61.60 undetermined^a Septo-optic dysplasia Blastogenic malformations Anorectal atresia/stenosis $2.81 - 4.70^{b}$ Caudal dysgenesis 53.00-200.00 Congenital heart defects up to 18.24^d Costovertebral segmentation defects 26.30-39.30^e Holoprosencephaly 6.00 - 10.20up to 6.47^f Longitudinal limb defects Microtia/anotia/hemifacial microsomia 2.40 - 3.752.90^{b, g} Neural tube defects 3.10-10.43^h Renal adysplasia Sirenomelia undetermined^{b, i} Thymus aplasia 29.62 Urorectal septum malformation undetermined^a

Role of maternal nutrition: a double edged sword

Freinkel N. The Banting Lecture 1980. Of pregnancy and progeny. Diabetes

Malformation rates halved with every 1% reduction in HbA1c

BMJ 2007;334:742-45

Inkster, M. E. et al. BMC Pregnancy Childbirth, 6 30 (2006).

Pre-conception counselling

- significantly lower prevalence of major congenital anomalies in women who attended for prepregnancy counselling (2.1% vs 6.5%; RR 0.36, 95% CI 0.22-0.59)
- CEMACH (UK):
 - Only 35% of women with pregestational diabetes received preconception counselling
 - 37% had a measurement of HbA1c level within the 6 month period before pregnancy
 - less than 39% were taking folic acid before conception.

Ray JG, O'Brien TE, Chan WS. Q J Med 2001; 94: 435-444. Confidential Enquiry into Maternal and Child Health. (London, 2005).

Pre-conception counselling

- Contraception until care optimised
- General
 - Smoking cessation, alcohol minimisation, weight control
 - Folate 5mg daily for at least 1 month prior
- Specific
 - Check B12 if on metformin
 - Tight BGL control
 - Fasting 4-5.5, 1 hr <8, 2h <7mmol/l
 - HbA1c <6%-7%
 - Complication screening eye, proteinuria, TSH
 - Review medications
 - Stop ACEI, ARB, statin, beta-blocker
 - Control BP (prazosin, labetolol, nifedipine, methyldopa)
 - Stop OHA (except metformin)
 - Stop GLP-1 analogues
 - Commence insulin therapy when BGL levels are outside the target

First trimester (T1D/T2D) adverse effects

- Glycaemic disturbance with nausea and pregnancy
 - recurrent hypoglycaemia, DKA
- Increased risk of miscarriage (twice more likely)
 - Hyperglycaemia, maternal vascular disease including placental insufficiency, immunogenic factors and dysmorphogenesis
- Congenital malformation

Second and third trimester

Effects on Diabetes (risks to mother)

- Increased risk of retinopathy, nephropathy, HT, CVS effects
 -rapid HbA1c drop, angiogenic factors, anaemia, HT and alteration in blood
 volume
- Increasing insulin requirement (often 2-3 times the pre-pregnancy dose)
- Hypoglycaemia unawareness

Effects on Pregnancy

- PIH, Pre-eclampsia, renal dysfunction
- Pre-term labour, use of steroids
- labour intervention including caesarean section

Effects on foetus

- Macrosomia
- Birth injuries
 Shoulder dystocia, fractures, brachial plexus injuries, birth asphyxia
- Still birth
- Neonatal hypoglycaemia, seizures, jaundice

Does maternal hypoglycaemia affect foetus adversely?

- No systematic studies
- potentially teratogenic in first trimester (animal studies)
- Foetal brain can utilise lactate
- Avoid prolonged severe hypoglycaemia (BGL<3)
- Safe to use glucagon

Antenatal management for T1D and T2D

- Best managed in MDT setting with diabetes physician and obstetricians
- regular reviews (at least 2 weekly)
- Fasting BGL target 4-5.5, 2hr post prandial <7mmol/l
- ketone testing if BGL>10mmol/l
- Monitor biochemical parameters (HbA1c, EUC, Urine ACR, FBC)
- retinal screening each trimester
- Sonography (Dating scan, anomaly scan, cardiac scan and growth scans)
- Aim to deliver around 38-39 weeks

Intra- and post partum

- Peri-partum: close monitoring and strict glycaemic control (BGL 4-6mmol/l) -IV insulin/dextrose/KCl
- Most require <50% insulin following delivery
 - Halve insulin dosage or return to pre-pregnancy dosage
- Safe to breast feed but beware of hypoglycaemia
 - Many women with T2DM may be managed on diet alone whilst breast feeding
- Monitor BGL regularly
- Advise contraception, arrange clinical review 6-8 weeks
 - ARB/ACEi/statin excreted into breast milk

Gestational Diabetes

- Affects 12-20% of pregnancy
- High Risk groups: age >30, BMI, previous GDM, previous macrosomic baby, family history, ethnic group, glycosuria, PCOS – screen with f. BGL and HbA1c ASAP
- Universal screening at 24-28 weeks unless high risk earlier screening (refer to Health pathway)
- GDM diagnosed at 24-28 weeks on 75g OGTT based on 1 positive criteria [OR 1.75]

 $fasting \geq 5.1 \qquad 1h \geq 10 \qquad 2h \geq 8.5$

Hyperglycemia and Adverse Pregnancy Outcomes

Treatment of GDM

Target: fasting BGL <5.1, 2h <6.7mmol/l

- Nutritional advice
- Moderate exercise (walking, swimming)
- BGL monitoring 4 times a day
- metformin (crosses placenta but appears to be safe)
- Insulin therapy

Start Protaphane before bed and titrate to keep fasting BGL <5.2

Add NovoRapid with meals if prandial readings are >6.7mmol/l

 Fetal monitoring – US 4th wkly, Growth centile, Amniotic fluid index

When to deliver

• Higher rates of unexplained late fetal death

- Balance between premature delivery and increased fetal death
 - T1DM 36-38 weeks
 - T2DM 38-40 weeks

Post-pregnancy care: GDM

- Cease all treatment once placenta delivered
- Encourage breastfeeding
- OGTT at 6 weeks postpartum
 - Up to 50% will develop T2DM over next 5 yrs
- Lifestyle advice to delay development of T2DM
- Screen 1-3yrly for development of diabetes
- Recurrence rates up to 68%
 - Future pregnancies screen at diagnosis
 - Repeat at 16-18 + 28/40

HNELHD Pregnancy Guideline 2017

- Available on intranet
- ** Includes IV insulin protocol for labour/steroids
- High risk women should be delivered in center with NICU

Microvascular Complications

- Diabetic Peripheral Neuropathy
- Diabetic Autonomic neuropathy
- Diabetic Retinopathy
- Diabetic Nephropathy
- Diabetic foot disease*

Macrovascular Complications

- IHD
- PVD
- Stroke
- Cardiac failure*

Peripheral neuropathy

- Common
 - symptomatic neuropathy at least 10% prevalence
 - asymptomatic PN widely present
- Length dependent, symmetric (Glove and stocking)
- Thoracic and lumbar polyradiculopathy (Diabetic amyotrophy)
- Cranial (commonly oculomotor) and peripheral nerve palsy (median)
- Mononeuritis multiplex
- Treatment induced neuropathy (insulin neuritis)

Diagnosis

- History
- Foot examination
 - Pin prick, temperature, 10g monofilament = small fibre function
 - Vibration (125Hz), proprioception, pressure and reflexes = large fibre
- Ankle and knee reflexes, muscle power and gait
- And finally inspect the FOOTWARE!
- Nerve Conduction studies only if diagnosis in doubt or to exclude other causes

Management

- Most important: foot protection and prevention of ulcers!
- Engage podiatrists for treatment and surveillance
- Improve glycaemia, B12 deficiency, lipids, BP and lifestyle
- Pain relief as needed (pregabalin, low dose amitriptyline, duloxetine, venlafaxine, gabapentin)
- Capsaicin cream
- Avoid opiates
- Most patients settle down with improved glycaemia and time

With thanks to Dr Chris Sankoorikal

THE DIABETIC FOOT

DURING THIS WEEK....

©Diabetic Foot Australia 2016 nationaloffice@diabeticfootaustralia.org www.diabeticfootaustralia.org

1.Sinha et al 2.Fabrin et al 3. Cofield et al 4. M W Sohn et al 2009

Local data

- Diabetic foot procedures had the highest average length of stay of 20 days.
- Cost for diabetic foot procedures doubled between 2012-13 and 2014-15

Diabetic foot ulcer

- Neuropathy
 - Sensory
 - Autonomic
- Vascular ischemia
 - 25% asymptomatic
- Trauma
 - Infection
- Impaired immunity

Box 1 | Key components of the diabetic foot exam

Evidence of past and/or present ulcers

Foot shape

- Prominent metatarsal heads/claw toes
- Hallux valgus
- Muscle wasting
- Charcot deformity

Dermatological

- Callus
- Erythema
- Sweating

Neurological

- 10g monofilament at four sites on each foot and one of the following:
 - Vibration using 128 Hz tuning fork
 - Pinprick sensation
 - Ankle reflexes
 - Vibration perception threshold

Vascular

- Foot pulses
- Ankle brachial index (if indicated)
- Doppler wave forms

- Restoration of skin perfusion is considered to be a critical component of treatment.
- In individuals with critical ischaemia who did not undergo revascularization had a rate of major amputation of 23%-46% and a rate of wound healing of 53% at 1 year.
- Toe pressure <60mmHg unlikely to heal without revascularisation

Management principles

- Any systemic sepsis: need admission
- Commence antibiotics if infection suspected
- OFF LOAD
- Wound care
- Revascularisation
- Optimise glycaemic management
- High risk foot clinic referral ASAP

Pathophysiology – Charcot's

Autonomic Dysregulation Hyperemia AV Shunting Increased Bone resorption

↓ Proprioception
↓ Vibration & Pain
+
Repetitive stress - Insensate joint
Microfractures

Pathophysiology

Eichenholtz Classification -Clinical Progression

Adapted from Kelikian AS Operative treatment of foot and ankle 1999 : 153

Early Detection

High Index of Suspicion –Neuropathy Age : 5th-6th decade Diabetes ~10years Overweight Osteopenia*

Adapted from Kelikian AS Operative treatment of foot and ankle 1999 : 153

Clinical Stage

Erythema ↑Heat Oedema

NO weight bearing, Close Observation TCC/PPRC

Kelikian AS. Operative treatment of the foot and ankle. Stamford, Conn.: Appleton & Lange,

Eichenholtz Classification

Clinical Progression

Adapted from Kelikian AS Operative treatment of foot and ankle 1999 : 153

Imaging

Demineralisation of bone Periarticular fragmentation Joint dislocation

Treatment

Immobilisation (Mean duration ~18 weeks)

Prefabricated Pneumatic Removable Cast Charcot Removable Orthotic Walker

Total Contact Cast

Amstrong DG et al, Diabetes Medicine 1997 May;14(5):357-63

Surgical Indications

- 1. Severe deformity unable to brace
- 2. Marked instability
- 3. Ulcers
 - aim to try and heal ulcer first
 - may be caused by fixed bony deformity
- 4. Soft tissues at risk

Diabetic Foot Pathway

Presentation

Diabetic patient with foot ulcer / swelling / infection

History, examination and investigations

Consider CRP / FBC / UEC / LFT / HbA1c Radiology, wound swab*

Our Alliance

See **Diabetes Foot Screening** HealthPathway

Take Home Points

- Recognise : Charcot's Neuroarthropathy should be considered whenever there is an inflamed foot with background neuropathy
- Clinical clue: warm foot with bounding pulses
- Early Disease minimal radiological changes (may need MRI Foot)
- <u>Offloading cornerstone of management</u>

Autonomic neuropathy

- Wide spread or local autonomic nervous system dysfunction
- Cardiovascular: postural hypotension, resting tachycardia, exercise intolerance, intra operative instability, MI and sudden death
- GI: gastroparesis, diarrhoea or constipation
- Genitourinary: bladder dysfunction, ejaculatory or erectile dysfunction, orgasm failure, dyspareunia

Autonomic neuropathy

- Difficult to manage
 - Dietary modifications
 - Lifestyle modifications compression stockings
 - Drugs: midodrine, domperidone, prucalopride
- May improve with sustained glycemic control over time

Diabetic nephropathy

Natural History of Diabetic Nephropathy

	Designation	Characteristics	GFR (minimum)	Albumin Excretion	Blood Pressure	Chronology
Stage 1	Hyperfunction and hypertrophy	Glomerular hyperfiltration	Increased in type 1 and type 2	May Be Increased	Type 1 normal Type 2 normal hypertension	Present at time of diagnosis
Stage 2	Silent stage	Thickend BM Expanded mesangium	Normal	Type 1 normal Type 2 may be <30-300 mg/d	Type 1 normal Type 2 normal hypertension	First 5 years
Stage 3	Incipient stage	Microalbuminuria	GFR begins to fall	30-300 mg/d	Type 1 increased Type 2 normal hypertension	6-15 years
Stage 4	Overt diabetic nephropathy	Macroalbuminuria	GFR below N	>300 mg/d	Hypertension	15-25 years
Stage 5	Uremic	ESRD	0-10	Decreasing	Hypertension	25-30 years

What is microalbuminuria?

- Microalbuminuria = leakage of small quantities of albumin into the urine (below detection on dipstick) due to increased permeability in the glomeruli
- Common causes: diabetic kidney disease, Hypertension, glomerulonephritis
- "False" positive can occur after vigorous exercise, fever, sexual intercourse, UTI, menses so retesting is needed to confirm
- microalbuminuria is potentially reversible with improved glycaemia, BP control, ACE inhibition, SGLT2i and GLP1-RA however once macroalbuminuria occurs progression to end stage renal disease inevitable

Diagnosis, classification and staging of CKD

		Albuminuria stage				
Kidney function stage	GFR (mL/min/1.73m ²)	Normal (urine ACR mg/mmol) Male: < 2.5	Microalbuminuria (urine ACR mg/mmol) Male: 2.5-25	Macroalbuminuria (urine ACR mg/mmol) Male: > 25		
		Female: < 3.5	Female: 3.5-35	Female: > 35		
1	≥90	Not CKD unless				
2	60-89	pathological abnormalities present				
3a	45-59					
3b	30-44					
4	15-29					
5	<15 or on dialysis					

Risks of progressive CKD denoted as low (green), moderate (yellow), high (orange) and very high (red).

[For specific management plans refer to Chronic Kidney Disease Management in General Practice [1]]

- Note:
 - For patients with CKD, the combination of a low GFR and albuminuria or proteinuria places them at a greater risk of CKD progression at all ages, than those with just low GFR, albuminuria or proteinuria.
 - A measured or estimated GFR <45 mL/min/1.73m² is associated with increased risks of adverse renal, cardiovascular and other clinical outcomes, irrespective of age.

Diabetic renal disease

- Check urine ACR for ALL patients with diabetes at least annually
- If Microalbuminuria confirmed, maximise ACEI (ARB) and start SGLT2i if no contraindication (eGFR>15*)
- Improve glucose control and other vascular risks
- Specialist management required
 - Progressive microalbuminuria (ACR>30mg/mmol)
 - reduction in GFR (<30ml/min)</p>
 - Nephrotic syndrome: overt proteinuria (ACR >300mg/mmol) or hypoalbuminemia
 - Other signs of kidney failure : Anemia, acidosis, hyperkalemia
- Occasionally renal biopsy is warranted to exclude other causes

Diabetic retinopathy

Diabetic Retinopathy

Prevalence of diabetes-specific retinopathy (moderate or more severe retinopathy) by vigintiles of the distribution of FPG, 2-h PG, and A1C.

©2011 by American Diabetes Association

Diabetic Retinopathy

- Risk factors:
 - Duration of diabetes
 - Degree of glycaemia (variability of glycaemia)
 - Hypertension, Hyperlipidemia, Smoking
 - African-American
 - Pregnancy
- Screening: at least every 12-18 month
- Prevention:
 - Fenofibrate slows progression in T2DM
 - Mediterranean diet appear beneficial
 - ?Omega 3 supplementation
 - Macuvision (macular oedema)

Erectile dysfunction

- Male erectile dysfunction is very common in diabetes
- Multifactorial including vascular and neurogenic, compounded by smoking, alcohol, obesity, low testosterone
- Inability to sustain erection, premature/ delayed/retrograde/absent ejaculation
- Female sexual dysfunction is also being recognised

Macrovascular disease

- IHD (15%) PVD (30%) and CVD
- Atherosclerosis induced
- Duration of DM and degree of metabolic risk control
- Smoking and family history
- Macrovascular disease start at prediabetes

Treatment

- Counselling should include partners whenever possible
- Treatment may or may not work
- Consider PDE5 inhibitors daily or PRN
- Caverject injections
- Penile pump
- Referral to Endocrinology or Urology

Newer agents and vascular complications of Diabetes

EMPA-REG: Cardiovascular Outcomes And Death From Any Cause.

CVOT MACE/mortality

Hazard Ratio

Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus, Volume: 139, Issue: 17, Pages: 2022-2031, DOI: (10.1161/CIRCULATIONAHA.118.038868)

Heart Failure

Trials	Patients	Events	Treatment Events per 100 ptyrs	Placebo Events per 100 ptyrs	Weights				HR [95% CI]
GLP1-RA									
ELIXA	6068	249	1.8	1.9	19.7		۱ ۰۰۰۰		0.96 [0.75, 1.23]
LEADER	9340	466	1.2	1.4	36.4		F		0.87 [0.73, 1.05]
SUSTAIN-6	3297	113	1.8	1.6	8.8		F	i	1.11 [0.77, 1.61]
EXSCEL	14752	450	0.9	1.0	35.0		F		0.94 [0.78, 1.13]
Fixed Effects for HH	F (P-value=0.20)						-		0.93 [0.83, 1.04]
SGLT2i									
EMPA-REG OUTCOM	IE 7020	221	0.9	1.4	24.0				0.65 [0.50, 0.85]
CANVAS Program	10142	243	0.6	0.9	25.6	·	•1		0.67 [0.52, 0.87]
DECLARE-TIMI 58	17160	498	0.6	0.8	50.4	<u> </u>			0.73 [0.61, 0.88]
Fixed Effects for HH	F (P-value<0.001)						-		0.69 [0.61, 0.79]
						0.50			7
						0.50	1.00 Hazard Ratio	1.50 2	.00

Compari on It a zife & o cli carcine ite reptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes In Type 2-Diabetes Menitos, Volume: 139, Issue: 17, Pages: 2022-2031, DOI: (10.1161/CIRCULATIONAHA.118.038868)

Renal outcome

Hazard Ratio

Comparison of the Effects of File and Le Ceptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus, Volume: 139, Issue: 17, Pages: 2022-2031, DOI: (10.1161/CIRCULATIONAHA.118.038868)

V Perkovic et al. N Engl J Med 2019;380:2295-2306.

Normal physiology

Hyperfiltration in early stages of diabetic nephropathy

SGLT-2 inhibition reduces hyperfiltration via TGF

Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials Lancet Diabetes and Endocrinology V 7 10, OCTOBER 2019 776- 785 Soren Kristensen et al.

	GLP-1 receptor agonist n/N (%)	Placebo n/N (%)	Hazard ratio NNT (95% CI) (95% CI)	p value
All-cause mortality				
ELIXA	211/3034 (7%)	223/3034 (7%)	0.94 (0.78-1.13)	0.50
LEADER	381/4668 (8%)	447/4672 (10%)	0.85 (0.74-0.97)	0.02
SUSTAIN-6	62/1648 (4%)	60/1640 (4%)	1.05 (0.74-1.50)	0.70
EXSCEL	507/7356 (7%)	ERA/7206 (84)	0.95 (0.77 0.07)	0.015
Harmony Outcomer	105(4721(44))	305(4233(4%)	0.05 (0.70-37)	0.64
Plannony Outcomes	190/4/31(4%)	205/4/32 (4%)		0.04
REWIND	536/4949(11%)	592/4952 (12%)		0.06/
PRINEER D	23/1591(1%)	45/1592 (3%)	0.51 (0.31-0.84)	0-008
Overall	1916/27977 (7%)	2156/28027 (8%)	0-88 (0-83-0-95) 113 (80 to 271)	0-001
(P=16.5%, p=0.304)			· · · · · · · · · · · · · · · · · · ·	
Hospital admission for h	neart failure			
ELIXA	122/3034 (4%)	127/3034 (4%)	0.96 (0.75-1.23)	0.75
LEADER	218/4668 (5%)	248/4672 (5%)	0.87 (0.73-1.05)	0.14
SUSTAIN-6	59/1648 (4%)	54/1649 (3%)	1.11 (0-77-1.61)	0.57
EXSCEL	219/7356 (3%)	231/7396 (3%)	0.94 (0.78-1.13)	0.51
Harmony Outcomes	79/4731 (2%)	111/4732 (2%)	0.71 (0.53-0.94)	0.019
REWIND	213/4949 (4%)	226/4952 (5%)	0.93 (0.77-1.12)	0.46
PIONEER 6	21/1591 (1%)	24/1592 (2%)	0.86 (0.48-1.55)	0.59
Overall	931/27977 (3%)	1021/28027 (4%)	0-91 (0-83-0-99) 311 (164 to 2797)	0-028
(P=0-0%, p=0-595)			r	
Composite kidney outco	me including macroalbo	minuria		
ELIXA	172/2647 (6%)	203/2639 (8%)	0.84 (0.68-1-02)	F80-0
LEADER	268/4668 (6%)	337/4672 (7%)	0.78 (0.67-0.92)	6-003
SUSTAIN-6	62/1648(4%)	100/1649 (6%)	0.64 (0.46-0.88)	0.006
EXSCEL	266/6266/6%)	407/6222 (7%)	0.88(0.26.1.01)	0.065
REWIND	848/4040(17%)	070/4052 (20%)	085(077.002)	0.001
REWINN	040(4343/11 #)	310(4332 (20%)		100.001
Overall	1716/20168 (9%)	2017/20134 (10%)	0-83 (0-78-0-89) 62 (48 to 96) <	0-001
(P=0-0%, p=0-413)			r i l i i	
Worsening of kidney fur	nction			
ELIXA	41/3031 (1%)	35/3032 (1%)	1.16 (0.74-1.83)	0.513
LEADER	87/4668 (2%)	97/4672 (2%)	0.89 (0.67-1.19)	0.43
SUSTAIN-6	18/1648 (1%)	14/1649 (1%)	1.78 (0.64-2.58)	0.48
EXSCEL	246/6456 (4%)	273/6458 (4%)	0.88 (0.74-1.05)	0.164
REWIND	169/4949 (3%)	237/4952 (5%)	0-70 (0-57-0-85)	0-001
Overall	561/20752 (3%)	656/20763 (3%)	0.87 (0.73-1-03) 247 (119 to -10721) (0-098
(P=42.7%, p=0.137)	2-4/20/20 (2/2)	-20100102(20)		20
			05 i 15	
			Favours GLP-1 Favours	

receptor agonist placebo

GLUCOSE-LOWERING MEDICATION IN TYPE 2 DIABETES: OVERALL APPROACH

Take home messages

- Diabetic complications is very common
 SCREEN to make a difference
- Progression may not be stepwise
- BP, glucose and weight control is important
- Think acute Charcot when you see a swollen foot
- Remember the BABY!

Questions ?

